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Absiract. A new wave-function matching formalism is vsed to calculaie wave functions 3
and the conductance gz for a quantum dot as functions of the Fermi wavelength A. The dot is
formed in a 2D quantum wire with hard walls by pushing in through one wall two identical, hard-
wall, rectangular fingers with height /i, width ¢ and separation 5. Calculations of conductance
g12 are made for a structure which exhibits two resonant tunnelling peaks below the nominal
transmission threshold over the tops of the fingers. These peaks are associated with the open-
ended organ pipe medes in the region between the fingers. The two longest organ pipe resonant
wavelengths are within 2% and 10% of the calculated peak positions, but wave-function spillage
aver the tops of the fingers and the space between them has a marked effect on both the resonant
wave functions and the rescnant wavelengths. Contour plots of [w[? for scattering waves are
presented and used to elucidate the behavioar of gqa.

1. Introduction

In a recent paper [1], hereafter referred to as I, the authors describe a widely applicable
new procedure for calculating conductances and scattering wave functions for 2D hard-
wall nanostructures. To test the procedure, calculations are reported in I for a baliistic 2D
quantum wire with one hard-wall finger pushed in through one side. In this paper, we
use the same procedure to calculate conductances and scattering wave functions when two
hard wall fingers are pushed in through one side to form a quantum dot. Studies of wave
functions in other structures using different matching procedures are reported in references
{2-14].

We suppose that the 2DEG is at absolute zero and is spin degenerate with a Fermi
wavelength denoted by A. The conductance g3 is calculated in units of 2¢2/k as a function
of 2w/} where w is the width of the quantum wire. Our main concern is the resonant
tunnelling peaks which arise when 2w /A is below the nominal propagation threshold of the
structure and is close to a resonant value for one of the open-ended organ pipe resonances
of the quantum dot. We calculate the behaviour of the resonant peaks as the finger height
h and width d are varied and give contour plots of |y|? (where ¥ is a scattering wave
function) in the neighbourhood of the resonances.

The plan of the paper is as follows. In section 2 we describe the nanostructure and
introduce some relevant notation. Section 3 is devoted to the dependence of g2 on 2w/A.
In section 4 we study the behaviour of the contour plots of |¥[?, and in section 5 we draw
some conclusions.
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2. The nanosttucture and the method of calculation

The nanostructure is shown schematically in figure 1. Terminals 1 and 2 are assumed to be
ideal electron waveguides which inject electrons into the region between the vertical dashed
lines, which we refer to as ‘interfaces’. The full lines are hard walls at which the electronic
potential energy rises to infinity. Inside these walls, the potential energy is set equal to zero,
The notation used for the various dimensions of the nanostructure is indicated in the figure,
The fingers are identical with height £, width ¢ and spacing 5. The height above the fingers
is denoted by w' = w — k where w is the width of the quantum wire. The region between
the interfaces is referred to as the ‘cavity’.
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Figure 1. A sketch of the nanostructure giving the notation used for #ts dimensions. The full
lines are hard potential walls.

The calculations are carried out by computing a set of cavity functions, each cne of
which matches a quantum wire mode in magnitude and sign across one interface, and
vanishes on the other interface. We can then set up a general wavefunction for the entire
structure which is continuous everywhere by taking an arbitrary superposition of cavity
wave functions, each one of which is extended continuously into both terminals. We relate
these coefficients of the modes in this general wave function by performing a least squares
minimijzation of the total error in the continuity of the normat derivative of v across both
interfaces. We are then in a position to determine the scatiering matrix, the conductance g5
between terminals 1 and 2, and the wave function for any given set of quantum wire modes
incident on the structure. All the propagating todes in the quantum wires are included in the
calculation and the number of evanescent modes is increased until satisfactory convergence
is achieved for g;» and the wave functions. Full details are given in L

3. The dependence of the conductance on the Fermi wavelength

‘We consider first a structure in which the fingers have height 2 = 0.7w and width d = 0.4w.
The dashed curve in figure 2 shows gy in units of 2¢2/k when only one finger is present
(this structure is considered in detail in I}. To a reasonably good approximation, gi is
equal to the number of modes which can propagate in the region above the finger. Let us
write w’ = w — h = 0.3w for the width of this region. Then, the number of propagating
modes above the finger is the largest integer in 2w'/h = (w'/w) 2w/h = 0.3 x 2w/A.
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Consequently, giz — 0 when 2w /A falls below w/w’ = 3.33, and increases to the integer n
when 2w/ goes through n/0.3 = 3.337. We refer to w/w' as the ‘nominal threshold’ value
of 2w/ in what follows. The dashed curve in figure 2 exhibits the above behaviour, but
also has smal! oscillations at the beginning of each conductance plateaw. The oscillations
are due to weak reflection of the waves propagating above the finger at the sharp comers
of the finger [1,3]. The full line in figure 2 shows gy, calculated for two fingers spaced by
an arbitrarily chosen value of s = 0.467w. We see that gy2 apparently continues to vanish
below the nominal threshold (but see below for a correction to this observation). Above the
nominal threshold, g,> shows strong oscillations because there are strong multiple reflections
in the region between the two fingers. The heights of the peaks increase as new modes
begin to propagaie above the fingers, but never exceed g4 for one finger.
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Figure 2. A plot of conductance above the nominal threshold against 2w /) when dfw = G4,
hfw=0.7, s/w = 0467 and w'/w = 0.3. The full curve is calculated for the structure shown
in fignre 1. The dashed curve is for the case when one finger is removed.

It was expected that resonant tunnelling peaks would be found below the nominal
threshold. Their absence from figore 2 is due to the relatively large value of finger thickness,
d = 0.3w, uvsed in the calculations which is in the same order as most of the values of
d used in I. The width of the resonant tunnelling peaks is a strong function of 4. When
d = 0.3w the peaks exist, but are so narrow that calculations for very small incremental
steps of 2w /A failed to reveal them in figure 2. In figure 3 we plot g1 against 2w/A below
the nominal threshold when & is reduced to 0.1w and the remaining dimensions are the same
as those used in figure 2. We now find two resonant tunneiling peaks at 2w /A = 2.214 and
2743 at which g12 = 1.

The location of the peaks is close to the two lowest resonant 2w /A values for the open-
ended space between the fingers. We write the resonant values of A in this space in the
form A, where m is a positive integer and » is a positive odd integer. Then

2w [mw 2+ [nw 2)172 (1)
Ame AL § 2h )
The corresponding solutions of the wave equation (in which the potential energy is zero)
vanish on the hard walls at the bottom and the sides of the space considered, and has zero
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Figure 3. A plot of conductance below the nominal threshold against 2w/ when d/w = 0.1
and the other dimensions have the values given in figure 2.

normal derivative on a horizontal straight line joining the tops of the fingers. We draw
atiention to the fact that w cancels out of (1). It is introduced because all other lengths
are expressed in terms of it in our calculations. The two lowest values of 2w/A,,, derived
from (1) are 2w /Ay = 2.26 and 2w /A3 = 3.03 which are within 2% and 10% respectively
of the values at the resonant peaks in figure 3. The error arises because (1) is a useful
but crude approximation. It takes no account of the ‘spillage’ of the wave functions both
above the region between the two fingers, and over the finger tops which we discuss in
section 4. All the other open-ended organ pipe resonances are above the nominal threshold
and contribute to the oscillatory structure shown in figure 2.

To illustrate the effect of spillage, we plot the resonant peaks in figure 4 for 4 = 0.1w,
as in figure 3, and i2/w = 0.667 (Jong dashes), 0.700 (long and short dashes), 0.733
(short dashes), 0.767 (medium-sized dashes) and 0.800 (full line). Equation (1) predicts
that 2w /Ay and 2w/X;3 both increase as A is reduced. We see from figure 4 that the
opposite happens because decreasing » increases the aperture w' = w — & above the fingers
which increases the wave function spillage. In the next section, we present wave-function
contours which confirm this explanation. We also see in figure 4 that the width of the
resonances increases as h/w is reduced, which is consistent with increased leakage into
the region above the fingers. Finally, we see from figure 4 that, for the smallest value of
k/w considered; 0.667 (long dashes), the broad second resonance lies on the rising curve of
g1z which precedes the nominal threshold at 2w /L = 3. We would also expect spillage to
increase when the flat fingers considered up tll now are replaced by fingers with the same
width (0.1w) for which the same overall height % is achieved by shorter fingers (with &
reduced by r) capped with semicircles of radius 7. Our calculations confirm this expectation
and are shown in figure 5. The positions of the resonances move to lower 2w/A values as
we move from flat-topped fingers (dashed line) to round-topped fingers (solid line). The
resonances also broaden due to the increased spillage.

Finally, in figure 6 we revert to flat-topped fingers in order to show the effect on the
second resonance of its passage through the nominal threshold. The dotted curve is taken
from figure 4 and has #2/w = 0.667. The second resonance peak is well below the nominal
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Figure 4. The dependence of the resonance peaks on finger height for high fingers. Fhe curves
are drawn for d/w = 0.1 and f/w = 0.8 (—), 0.767 (— — —}, 0.733 (----), 0.700 (chain)
and 0.667 (— - —). The other dimensions bave the values given in figure 2.
= 1.0-
)
3’
11}
9 ?
0.5+
P
S
a i
= H
0 I
O 01 0 ¥ - g
2.0 2.5 2.0

2W /A

Figure 5. The dependence of the resonance peaks on finger shape for high fingers. The curves
are drawn with d/w = 0.1 for rounded fingers (full line) and for flat-topped fingers {dashed
line). The other dimensions have the values given in figure 2.

threshold at 2w/A = 3 and consequently suffers very little distortion. The dashed curve
has #/w = 0.6. The nominal threshold is at 2w/A = 2.5 and the second resonance is now
almost obscured by the beginning of the first region of strong propagation. Finally, the solid
curve has k/w = 0.533, The nominal threshold is at 2w /A = 2.14 and a short plateau with
g1z = 1 completely obscures the secend resonance. In this case, the first resonance peak
has moved to 2w/ = 1.89 and is followed by a pseudo-plateau with g;» = 0.26 extending
from 2w/A = 2.0 to 2.4. We potice that, in all three cases, gi2 = 0 near to 2w/A = 2.6
which is just below the second resonance. When A/w = 0.533, this zero delays the onset
of a region where gi2 ~ 1 until 2w /A is well above the nominal threshold.

4. The behaviour of the wave function near resonance and on plateanx

In this section, we present contour plots of [y|> when the ‘dominant’ mode is incident in
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Figure 6. The dependence of the resonance peaks on finger height for low fingers. The curves
are drawa for d/w = 0.1 and kfw = 0.667 (----}, 0.6 (— — ~—) and 0.533 {——) for which

the nominal threshold is at 2w/A = 3, 2.5 and 2.14 respectively. The other dimensions have
the values given in figure 2.

terminal 1. (The dominant mode begins to propagate in the terminals when 2w/ = 1.)
Figure 7 shows the contours for the structure described in figure 3 when 2w/A = 2.214, ie.
at the centre of the first resonance peak. The contours are largely confined in the regions
between the fingers but there is considerable ‘spillage’ above the space between them and
over their tops. In both terminals, |1}* is too small to appear on the contour scale used
in figure 7. The contours are almost symmetrical about the cenire line of the structure (at
x/2w = 0.5) in spite of the asymmetric excitation. This is because the dominant mode
incident in terminal 1 strongly excites the lowest organ-pipe resonance between the fingers
which is symmetrical. The contours in figure 8 are drawn for the same structure when
2w /) = 2.35 (which is just above the first resonance peak in figure 3 with gy = 0.044).
The contours are all concentrated on the left of the diagram where a strong standing-wave
pattern appears in terminal 1 because the dominant mode is almost totally reflected. On the
contour scale used in figure 8, no contours appear either between the fingers or in terminal 2,
Simalar behaviour is found when 2w /A = 2.15 which is just below the first resonance peak.

In figures 9, 10 and 11, we plot contours of |¢|* when A/w is increased from 0.533
to 0.7. The variation of g, in this case is given by the full line in figure 6. The contours
in figure 9 are drawn for 2w/A = 1.89 which is at the centre of the first resonance peak.
We see that there is a fairly strong build-up of [y|> over the entire region in the space
both between the fingers and above their tops. Moreover, the position of the maximum
in [¥]* has moved from just inside the space between fingers in figure 7 to just outside it
in figure 8. The contours in figure 10 are drawn for 2w /A = 2.2 which is the middle of
the pseudo-plateau where gjp = 0.298 in figure 6. There is now a strong standing-wave
paitern in terminal 1, weak excitation of || in the space between the fingers and, as we
would expect, weaker excitation of |i|? in terminal 2. Finally, in figure 11, we show the
contours of |y[2 when 2w/A = 2.85, which is on the short plateau with g1, = 1, which
is exhibited by the full curve in figure 6. We see that the incident dominant mode now
excite a T-shaped symmetrical resonance in |y{> which is spread over the entire T-shaped
region in between and above the fingers. Moreover |¥{® has a minimum near the tops of
the fingers. Since Z/w = 0.533 this minimum is close to that exhibited by mode 2 in the
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Figure 7. Contours.of |y for the structure described in figure 3. The contours are drawn for
2w/h =2.214 (ie. the centre of the first resonance peak in figure 3).

1 [ 1 l
0.6 0.8
x/2W

Figure 8. Contours of [w[ for the structure described in figure 3. The contours are drawn for
2w/\ = 2.35 which js just above the first resonance peak in figure 3.

terminals, which begins to propagate when 2w/ > 2 and has ¥ = 0 on the centre on the
line of the terminals. Consequently, we expect to find mode 2 strongly excited in terminal 2.
The pattern of contours shown there in figure 11 indicates that this is the case. The pattern
of contours in terminal 1, on the other hand, indicates that mode 1 suffers considerable
reflection from the quantum dot.
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Figure 9. Contours of |3!f|2 for the structure described in figure 6 when h/w = 0.533. The
contours are drawn for 2w /A = 1.89 which is at the centre of the first resopance peak.
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Figure 10. Contours of [¢[* for the structure described in figure 6 when A/w = 0.533. The
contours are drawn for 2w/A = 2.20 which i near the middle of the psendo-plateau where
g12 = 0.298.

5. Conclusion

The numerical results presented in the figures show that useful data for g1z and [¥|* for
a quantum dot can be generated by using the numerical procedure described in L In the
interpretation of the data we have, in the interests of brevity, concentrated attention largely
on the first resonance peak of gi2. The simple model used to predict the location of the
resonance peak should not be taken too seriously. It helped us to find the resonant values of
2w/ but it totally ignores the effect of wave-function spillage outside the region between
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Figure 11. Contours of |¢|? for the structure described in figure 6 where A/w = 0.533, The
contours are drawn for 2w/A = 2,85 at which g2 = 1. ‘

the fingers which is always significant. It becomes increasingly important as £ /w decreases
from 0.7 as in figure 7 to 0.533 as in figure 9. In particular, we have seen that the maximum
of [y|* moves from just inside to outside the region between the fingers. This feature is not
present in our simple model, which is part of the reason why the model predicts that the
first resonant values of 2w /X increase as h/w decreases whereas, in reality, they decrease.
The other part of the reason is the spreading out of ||* over both the tops of the fingers
and the space between them (which is shown best in figure 9) which is also neglected in
the model.

One might consider improving on this behaviour by fitting half-period sine functions
between the hard walls in both the x and y directions. Then % is irrelevant and consequently
the first resonance value remains constant at 2w /A = 2.36 instead of moving the wrong
way. This result is exact when A/w = 1 because the dot is then completely enclosed by
hard walls. It stays constant when A/w is reduced because it only allows (approximately)
for spillage above the space between the fingers and ignores the spillage over their tops.
Both these components of the spillage are important. In our calculation, 2 /w varies between
0.533 and 0.8. The computed values of 2w/A; at the ends of this range are 1.89 and 2.27
respectively. The two approximate formulae yield results for 2w /i, which are always
close to each other with the open-ended result nearer to the computed value. There is Little
to be gained by elaboration of these elementary models. Numerical modeis are essential in
quantitative studies of the behaviour of quantum dots.

We have confined our attention here to a strictly 2D electron gas moving in the xy
plane. In practice the system to be considered is a 3D electron gas subjected to a confining
potential V(z) created by one or more planar heterojunctions. The typical width of V(z)
is in the order of 10 nm. To make a structure of the type considered here, split gates are
usually used to create a confining potential V(y) in the y direction with a width ~ 300 nm.
Consequently, the energy levels €,, (withn = 0, 1, 2, .. .) created by V(z) are much further
apart than those created by V{y). When the temperature tends to zero, only the ground state
of V(z) is usually occupied. In that case V' (z) drops out of the calculation of gz apart from
the fact that the de Broglie wavelength A is now given by (82/2m*)2n/2)? = €5 — €,
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where ¢r is the Fermi level. When ¢ is high enough for electrons to occupy some excited
states of V(z) it is only necessary to repeat this calculation for each occupied level ¢, and
add the results. This argument is valid only when V() is strictly independent of z. If the
variation of V(y} across the narrow 2D electron gas is significant then full 3D calculations
are necessary which would entail a very large increase of computer time.
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