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AbstracL A new wave-function matching formalism is used to calculate wave functions @ 
and the conductance g ~ z  for a quantum dot as functions of the Fermi wavelength A. The dot is 
formed in a W quantum wire with hard walls by pushing in thmugh one wall two identical, bad- 
wall, rectangular fingers with height h, width d and sepmtion s. Calculations of condumce  
812 are made for a stmcum which exhibits two resonant tunne!ling peaks below the nominal 
transmission threshold over the tops of the fingers. Thwe peaks are associated with the open- 
ended organ pipe modes in the region between the fingers. The two longest organ pipe resonant 
wavelengths are within 2% and 10% of the calculated peak positions, but wave-function spiUage 
over the tops of the fingers and the space between them has a marked effect on both ule w n a n t  
wave functions and the resonant wavelengths. Contour plots of l@lz for scattering waves are 
presented and used to elucidate the behaviour of gtz. 

1. Introduction 

In a recent paper [I], hereafter referred to as I, the authors describe a widely applicable 
new procedure for calculating conductances and scattering wave functions for 2D hard- 
wall nanostrucmes. To test the procedure, calculations are reported in I for a ballistic 7D 
quantum wire with one hard-wall finger pushed in through one side. In this paper, we 
use the same procedure to calculate conductances and scattering wave functions when hvo 
hard wall fingers are pushed in through one side to form a quantum dot. Studies of wave 
functions in other shuctures using different matching procedures are reported in references 
[2-14]. 

We suppose that the 2DEG is at absolute zero and is spin degenerate with a Fermi 
wavelength denoted by A. The conductance glz is calculated in units of 2e2/h  as a function 
of 2w/A  where w is the width of the quantum wire. Our main concern is the resonant 
tunnelling peaks which arise when 2w/A is below the nominal propagation threshold of the 
structure and is close to a resonant value for one of the open-ended organ pipe resonances 
of the quantum dot. We calculate the behaviour of the resonant peaks as the finger height 
h and width d are varied and give contour plots of \ $ I2  (where $ is a scattering wave 
function) in the neighbourhood of the resonances. 

The plan of the paper is as follows. In section 2 we describe the nanostructure and 
introduce some relevant notation. Section 3 is devoted to the dependence of g12 on 2wjA. 
In section 4 we study the behaviour of the contour plots of \$\2. and in section 5 we draw 
some conclusions. 
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2. The nanos t~c tu re  and the method of calculation 

The nanostrucme is shown schematically in figure 1. Terminals 1 and 2 are assumed to be 
ideal electron waveguides which inject electrons into the region between the vertical dashed 
lines, which we refer to as ‘interfaces’. The full l ies are hard walls at which the electronic 
potential energy rises to infinity. Inside these walls, the potential energy is set equal to zero. 
The notation used for the various dimensions of the nanostructure is indicated in the figure. 
The fingers are identical with height h, width d and spacing s. The height above the fingers 
is denoted by w‘ = w - h where w i s  the width of the quantum wire. The region between 
the interfaces is referred to as the ‘cavity’. 

P N Butcher and J A Mclnnes 

d l  

Figure 1. A skexch of the nanostructure giving the notation used for its dimensions. The full 
lines are hard potential walls. 

The calculations are canied out by computing a set of cavity functions, each one of 
which matches a quantum wire mode in magnitude and sign across one interface, and 
vanishes on the other interface. We can then set up a general wavefunction for the entire 
structure which is continuous eveqwhere by taking an arbitrary superposition of cavity 
wave functions, each one of which is  extended continuously into both terminals. We relate 
these coefficients of the modes in this general wave function by performing a least squares 
minimization of the total error in the continuity of the normal derivative of @ across both 
interfaces. We are then in a position to determine the scattering mahix, the conductance g12 
between terminals 1 and 2, and the wave function for any given set of quantum wirc modes 
incident on the structure. All the propagating modes in the quantum wires are included in the 
calculation and the number of evanescent modes is increased until satisfactory convergence 
is achieved for g12 and the wave functions. Full details are given in I. 

3. The dependence of the conductance on the Fermi wavelength 

We consider first a structure in which the fingers have height h = 0 . 7 ~  and width d = 0 . 4 ~ .  
The dashed curve in figure 2 shows g12 in units of 2ez/h when only one finger is present 
(this structure is considered in detail in I). To a reasonabIy good approximation, gl2 is 
equal to the number of modes which can propagate in the region above the finger. Let us 
write w‘ = w - h = 0 . 3 ~  for the width of this region. Then, the number of propagating 
modes above the finger is the largest integer in 2w’/b = (w‘/w) 2w/h = 0.3 x 2w/X. 
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Consequently, g12 + 0 when 2w/h falls below w/w‘ = 3.33, and increases to the integer n 
when 2w/h  goes through n/0.3 = 3.3312. We refer to w/w‘ as the ‘nominal threshold’ value 
of 2w/h in what follows. The dashed curve in figure 2 exhibits the above behaviour, but 
also has small oscillations at the beginning of each conductance plateau. The oscillations 
are due to weak reflection of the waves propagating above the finger at the sharp comers 
of the finger [ l ,  31. The full line in figure 2 shows glz calculated for two fingers spaced by 
an arbi@arily chosen value of s = 0 . 4 6 7 ~ .  We see that glz apparently continues to vanish 
below the nominal threshold @ut see below for a correction to this observation). Above the 
nominal threshold, gI2 shows strong oscillations because there. are strong multiple reflections 
in the region between the two fingers. The heights of the peaks increase as new modes 
begin to propagate above the fingers, but never exceed g12 for one finger. 
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Fgve 2. A plot of canduaance above the ~minal threshold against 2w/h when dlw = 0.4, 
h / w  = 0.7, s / w  = 0.467 and w’/w = 0.3. The lull e w e  is calculated for the structure shown 
in figure 1. The dashed curve is for rhe -e when one finger is removed. 

It was expected that resonant tunnelling peaks would be found below the nominal 
threshold. Their absence f?om figure 2 is due to the relatively large value of finger thickness, 
d = 0.3w, used in the calculations which is in the same order as most of the values of 
d used in I. The width of the resonant knnelling peaks is a strong function of d. When 
d = 0 . 3 ~  the peaks exist, but are so narrow that calculations for very small incremental 
steps of 2wfb failed to reveal them in figure 2. In figure 3 we plot g12 against 2w/h below 
the nominal threshold when d is reduced to 0. lw and the remaining dimensions are the same 
as those used in figure 2. We now find two resonant tunnelling peaks at 2w/h = 2.214 and 
2.743 at which g12 = 1. 

The location of the peaks is close to the two lowest resonant 2w/A values for the open- 
ended space between the fingers. We Write the resonant values of h in this space in the 
form Am, where m is a positive integer and n is a positive odd integer. Then 

The corresponding solutions of the wave equation (in which the potential energy is zero) 
vanish on the hard walls at the bottom and the sides of the space considered, and has zero 
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Figure 3. A plot of conductance below the nominal threshold against Zw/A when d l w  = 0.1 
and the other dimensions have the values given in figure 2. 

normal derivative on a horizontal straight line joining the tops of the fingers. We draw 
attention to the fact that w cancels out of (1). It is introduced because all other lengths 
are expressed in terms of it in our calculations. The two lowest values of 2w/h,, derived 
from (1) are 2w/Xll = 2.26 and 2w/h13 = 3.03 which are within 2% and 10% respectively 
of the values at the resonant peaks in figure 3. The error arises because (1) is a useful 
but crude approximation. It takes no account of the ‘spillage’ of the wave functions both 
above the region between the two fingers, and over the finger tops which we discuss in 
section 4. All the other open-ended organ pipe resonances are above the nominal threshold 
and con~bu te  to the oscillatory shucture shown in figure 2. 

To illustrate the effect of spillage, we plot the resonant peaks in figure 4 for d = 0.1 w, 
as in figure 3, and h / w  = 0.667 (long dashes), 0.700 (long and short dashes), 0.733 
(short dashes), 0.767 (medium-sized dashes) and 0.800 (full line). Equation ( I )  predicts 
that 2w/hll and 2wjh13 both increase as h is reduced. We see from figure 4 that the 
opposite happens because decreasing h increases the aperture w‘ = w - h above the fingers 
which increases the wave function spillage. In the next section, we present wave-function 
contours which confirm this explanation. We also see in figure 4 that the width of the 
resonances increases as h/w is reduced, which is consistent with increased leakage into 
the region above the fingers. Finally, we see from figure 4 that, for the smallest value of 
h / w  considered; 0.667 (long dashes), the broad second resonance lies on the rising curve of 
812 which precedes the nominal threshold at 2w/h = 3. We would also expect spillage to 
increase when the flat fingers considered up till now are replaced by fingers with the same 
width ( 0 . 1 ~ )  for which the same overall height h is achieved by shorter fingers (with h 
reduced by r )  capped with semicircles of radius r .  Our calculations confirm this expectation 
and are shown in figure 5. The positions of the resonances move to lower 2w/A values as 
we move from flat-topped fingers (dashed line) to round-topped fingers (solid l ie) .  The 
resonances also broaden due to the increased spillage. 

Finally, in figure 6 we revert to flat-topped fingers in order to show the effect on the 
second resonance of its passage through the nominal threshold. The dotted curve is taken 
from figure 4 and has hjw = 0.667. The second resonance peak is well below the nominal 
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Figure 4. The dependence of Le resonance peaks on finger height far high fingen. The c w e s  
are drawn for d l w  = 0.1 and hlw = 0.8 (-), 0.767 (- - -1, 0.733 (-- -), 0.700 (chain) 
and 0.667 (- - -). The other dimensions have the values given in figure 2. 
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2w11 
Figure S. The dependence of the resonance peaks on finger shape for high fingers. The c w e s  
are drawn with d l w  = 0.1 for rounded fingers (full line) and for Bat-topped fingea (dashed 
line). The other dimensions have the values given in figure 2. 

threshold at 2wlA = 3 and consequently suffers very little distortion. The dashed curve 
has hlw = 0.6. The nominal threshold is at 2wlA = 2.5 and the second resonance is now 
almost obscured by the beginning of the first region of strong propagation. Finally, the solid 
curve has h / w  = 0.533. The nominal threshold is at 2 w l l  = 2.14 and a short plateau with 
g12 = 1 completely obscures the second resonance. In this case, the first resonance peak 
has moved to 2wlA = 1.89 and is followed by a pseudo-plateau with g I 2  = 0.26 extending 
from 2wlA = 2.0 to 2.4. We notice that, in all three cases, g12 = 0 near to 2w/A = 2.6 
which is just below the second resonance. When hlw = 0.533, this zero delays the onset 
of a region where g12 - 1 until 2wlh is well above the nominal threshold. 

4. The behaviour of the wave fundion near resonance and on plateaux 

In this section, we present contour plots of / $ I 2  when the ‘dominant’ mode is incident in 
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Figure 6. The dependence of Ihe resonance peaks on finger height for low fingers. The curves 
are drawn for d j w  = 0.1 and hjw = 0.667 (--- -), 0.6 (- - -) and 0.533 (-) for which 
the nominal threshold is at 2 w j A  = 3, 2.5 and 2.14 respectively. The other dimensioas have 
the values given in figure 2. 

terminal 1. (The dominant mode begins to propagate in the terminals when 2w/h = 1.) 
FigJre 7 shows the contours for the structure described in figure 3 when 2w/h = 2.214, i.e. 
at the centre of the first resonance peak. The contours are largely confined in the regions 
between the fingers but there is considerable 'spillage' above the space between them and 
over their tops. In both terminals, ! + I 2  is too small to appear on the contour scale used 
in figure I. The contours are almost symmetrical about the centre line of the smcture (at 
x / 2 w  = 0.5) in spite of the asymmetric excitation. This is because the dominant mode 
incident in terminal 1 strongly excites the lowest organ-pipe resonance between the fingers 
which is symmetrical. The contours in figure 8 are drawn for the same smcture when 
2w/h = 2.35 (which is just above the first resonance peak in figure 3 with g12 N 0.044). 
The contours are all concentrated on the left of the diagram where a strong standing-wave 
pattern appears in terminal 1 because the dominant mode is almost totally reflected. On the 
contour scale used in figure 8, no contours appear either between the fingers or in terminal 2. 
Similar behaviour is found when 2w/A = 2.15 which is just below the first resonance peak. 

In figures 9, 10 and 11, we plot contours of I@[' when h/w is increased from 0.533 
to 0.7. The variation of g12 in this case is given by the full line in figure 6. The contours 
in figure 9 are drawn for 2 w / h  = 1.89 which is at the centre of the first resonance peak. 
We see that there is a fairly strong build-up of I+!' over the entire region in the space 
both between the fingers and above their tops. Moreover, the position of the maximum 
in [ @ I 2  has moved from just inside the space between fingers in figure 7 to just outside it 
in figure 9. The contours in figure 10 are drawn for 2m/A = 2.2 which is the middle of 
the pseudo-plateau where g12 = 0.298 in figure 6. There is now a strong standing-wave 
pattern in terminal 1, weak excitation of 1 @ 1 2  in the space between the fingers and, as we 
would expect, weaker excitation of \+I2 in terminal 2. Finally, in figure 11, we show the 
contours of !@Iz when 2w/h = 2.85, which is on the short plateau with 812 = 1, which 
is exhibited by the full curve in figure 6. We see that the incident dominant mode now 
excite a T-shaped symmetrical resonance in I + l z  which is spread over the entire T-shaped 
region in between and above the fingers. Moreover [ @ I 2  has a minimum near the tops of 
the fingers. Since h / w  = 0.533 this minimum is close to that exhibited by mode 2 in the 
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Figure 7. Contours.of 1 $ 1 2  for the srmcture described in figure 3. The contom are drawn for 
2wjA = 2.214 (i.e. the mue of ule first resonance p& in figure 3). 
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Figure 8. Contours of [$I2 for the srmchlre described in figure 3. The contom are drawn for 
2wlA = 2.35 which is just above the first resonance peak in figure 3. 

terminals, which begins to propagate when 2 w / l >  2 and has + = 0 on the centre on the 
line of the terminals. Consequently, we expect to find mode 2 strongly excited in terminal 2. 
The pattern of contours shown there in fiewe 11 indicates that this is the case. The pattern 
of contours in terminal 1, on the other hand, indicates that mode 1 suffers considerable 
reflection from the quantum dot. 
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Fignre 9. Contours of 
contours are drawn for 2w/A = 1.89 which is at the centre of &e first resonance peak. 

for &e srmcture described in figwe 6 when h / w  = 0.533. The 
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Figure 10. Conlours of l t l Z  for the s m m e  described in figure 6 when hfw = 0.533. The 
contours are drawn for 2wf.l = 2.20 which is near the middle of the pseudo-plateau where 
611. = 0.298. 

5. Conclusion 

The numerical results presented in the figures show that useful data for gl2 and [$ I2  for 
a quantum dot can be generated by using the numerical procedure described in I. In the 
interpretation of the data we have, in the interests of brevity, concentrated attention largely 
on the first resonance peak of gI2. The simple model used to predict the location of the 
resonance peak should not be taken too seriously. It helped us to find the resonant values of 
2w/A but it totally ignores the effect of wave-function spillage outside the region between 
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Figure 11. Contours of 1$12 for the structure described in figure 6 where hjw = 0.533. The 
contours M drawn for 2w/A = 2.85 at which 812 = 1. 

the fingers which is always significant. It becomes increasingly important as h / w  decreases 
from 0.7 as in figure 7 to 0.533 as in figure 9. In particular, we have seen that the maximum 
of I@/'  moves from just inside to outside the region between the fingers. This feature is not 
present in our simple model, which is part of the reason why the~model predicts that the 
first resonant values of 2w/A increase as h j w  decreases whereas, in reality, they decrease. 
The other part of the reason is the spreading out of I@I' over both the tops of the fingers 
and the space between them (which is shown best in figure 9) which is also neglected in 
the model. 

One might consider improving on this behaviour by fitting half-period sine functions 
between the hard walls in both the x and y directions. Then h is irrelevant and consequently 
the first resonance value remains constant at 2wjA = 2.36 instead of moving the wrong 
way. This result is exact when h j w  = 1 because the dot is then completely enclosed by 
hard walls. It stays constant when h / w  is reduced because it only allows (approximately) 
for spillage above the space between the fingers and ignores the spillage over their tops. 
Both these components of the spillage are important. In our calculation, h / w  varies between 
0.533 and 0.8. The computed values of 2w/All at the ends of this range are 1.89 and 2.27 
respectively. The two approximate formulae yield results for 2w/All which are always 
close to each other with the open-ended result nearer to the computed value. There is little 
to be gained by elaboration of these elementary models. Numerical models are essential in 
quantitative studies of the behaviour of quantum dots. 

We have confined our attention here to a strictly 2D electron gas moving in the x y  
plane. In practice the system to be considered is a 3D electron gas subjected to a confining 
potential V ( z )  created by one or more planar heterojunctions. The typical width of V ( z )  
is in the order of 10 nm. To make a structure of the type considered here, split gates are 
usually used to create a confining potential V ( y )  in the y direction with a width N 300 nm. 
Consequently, the energy levels em (with n = 0, 1,2, . . .) created by V ( z )  are much further 
apaxt than those created by V ( y ) .  When the temperature tends to zero,~only the ground state 
of V ( z )  is usually occupied. In that case V ( z )  drops out of the calculation of g12 apart from 
the fact that the de Broglie wavelength A is now given by @ ' / ~ ) ( k / A ) '  = E,= - 
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where E F  is the Fermi level. When EF is high enough for electrons to occupy some excited 
states of V ( z )  it is only necessary to repeat this calculation for each occupied level czn and 
add the results. This argument is valid only when V ( y )  is strictly independent of z .  If the 
variation of V ( y )  across the narrow 2D electron gas is significant then full 3D calculations 
are necessary which would entail a very lage increase of computer time. 
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